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Fwst-order formulation of massive spin-2 field theories 

w cox 
Department of Mathematics, University of Aston in Birmingham, Gosta Green, 
Birmingham B4 7ET, UK 

Received 26 May 1981 

Abstract. First-order formulations of massive spin-:! theories are studied which involve 
only third and lower rank tensors. A systematic procedure is given for obtaining the 
equations in tensor form. If repeated irreps (KIR) are not allowed only essentially three 
distinct formulations are obtained. Some comments on their electromagnetic couplings are 
made. The use of the procedure when RIR are allowed is illustrated by deriving a one 
(complex) parameter family of Lagrangians which includes the conventional ‘Palatini’ 
first-order formulation of spin 2. The minimal polynomials of the Lo matrices for the 
various theories are discussed, illustrating graphical methods for examining the nilpotency 
indices of a first-order theory. 

1. Introduction 

The theory of the massive spin-:! field has received much attention over the years since 
the initial construction of a Lagrangian formulation by Fierz and Pauli (1939). The 
original Fierz-Pauli Lagrangian for spin 2 was second order in derivatives and involved 
a second rank symmetric traceless tensor, and a scalar auxiliary field. Fierz and Pauli 
also considered the minimal coupling of the theory to an electromagnetic field. 
Federbush (1961) showed that to avoid a loss of constraints problem the minimal 
coupling had to be supplemented by a direct non-minimal coupling to the electro- 
magnetic field strength. There followed a number of works on modification or 
generalisations of the Fierz-Pauli theory (Rivers 1964, Nath 1965, Bhargava and 
Watanabe 1966, Tait 1972, Reilly 1974). At the same time interest in general high-spin 
fields was generated by the discovery of the now well known inconsistency problems of 
Johnson and Sudarshan (1961) and Vel0 and Zwanzinger (1969a). In the course of 
investigating their acausality problem for spin other than 3, Vel0 and Zwanzinger 
rediscovered the spin-2 loss of constraints problem, but were not at first aware of the 
non-minimal term solution of it. Vel0 (1972) later made a thorough analysis of the 
external field problem for the ‘correct’ non-minimally coupled spin-:! theory, showing 
that it too is acausal. 

All of the work mentioned above dealt with a second-order formalism for the spin-2 
theory. Much of the confusion which arose over this theory could be traced to the 
so-called ‘derivative ordering ambiguity’ (Nagpal 1973) which is a feature of second- 
order systems. This problem can be avoided by working from the start with a first-order 
formalism, the theory of which is very well developed (Gel’fand et al 1963), and for 
which the minimal coupling procedure is unambiguous. Early versions of such a theory 
were those of Adler (1966) and Deser et a1 (1966) who worked by analogy with the well 
known Palatini formalism for the gravitational field. This theory has 50 field 
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components (of which only 5 must be independent for a spin-2 field!), and as we see in 
5 6, it is rather complicated. A more economical theory is the 30-component 
Schwinger-Chang theory (Schwinger 1963, Chang 1966) studied by Hagen (1972; see 
also Mathews et a1 1980). This is the theory of 8 3. As shown by Hagen (1972), the 
interaction behaviour of the theory is particularly sensitive to which first-order formal- 
ism one uses, and indeed one of the difficulties of the high-spin problem is that one can 
never (it seems) be completely sure that there is not some sufficiently complicated 
formulation of the theory which will not suffer from the normal ills of the external field 
problem. One of the early successes of supergravity was in the resolution of the 
acausality problem of Vel0 and Zwanzinger for the spin-? field (Deser and Zumino 
1976) and this gave hope that the high-spin pathologies could be circumvented. 
However, supergravity itself is now temporarily stuck at spin 5 (Van Nieuwenhuizen 
1981), essentially with a high-spin coupling problem. Further, while supergravity does 
avoid the spin-; problem, it does not really attend to the question of why the high-spin 
pathologies should occur, or indeed if they do occur for all high-spin theories. Thus i t  
appears that the high-spin problem is still open, although attention is focused at present 
on high-spin gauge theories. 

In view of the sensitivity of the first-order formalism to the coupling scheme it is 
useful to know what are the possible first-order formalisms for a given spin and what is 
the nature of their constraint structure. Thus, Shamaly and Capri (1973) have investi- 
gated possible first-order spin-1 theories, and obtained schemes unifying the different 
formulations known previously. In this paper we perform the same service for spin 2, as 
a means of illustrating a general approach in which simple graphical arguments are used 
to make an initial sorting of the possibilities, followed up by a detailed constraint 
analysis in tensor form. If irreps of the proper Lorentz group (ZP) are not allowed to be 
repeated, we find only three distinct first-order theories utilising tensors up to rank 
three. If repeated irreps (RIR) are allowed many further possibilities arise-of which 
the theory of Deser er al, considered in 5 6, is one. 

The theories we consider are of the general form 

(I,,@’ +im)+ = 0 (1.1) 

and are assumed to be ZP and space reflection covariant, and derivable from a real 
Lagrangian. The theory of such equations may be found in Gel’fand er a1 (1963), and 
the graphical techniques used in their analysis are described by Cox (1974a, b, c, 1978). 
For constraint and interaction analysis the form (1.1) is perhaps not so convenient as the 
usual tensor form, to which we resort to obtain the exact detailed form of the theories. 
However, recently much progress has been made in the external field problem for (1.1) 
(Mathews et a1 1980), which involves knowledge of the minimal polynomial of Lo in 
(1.1). To this end in 9 7  we have used some simple graphical ideas (Cox 1981) to 
identify the possible minimal polynomials for the various theories. 

We have only briefly discussed the external field problem for the theories, because 
for those of $0 3 and 6 the results are already known (Hagen 1972) while the theories of 
§§ 4 and 5 are very complicated and are deferred to a separate publication. 

2. The method of identifying possible theories 

We consider spin-2 theories described by a first-order equation of the form (1.1) which 
are covariant under space reflections and proper Lorentz transformations, and which 
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can be derived from a Lagrangian. In particular we shall consider general theories 
which use at most third-rank tensors. The motivation for this is that, as is conventional, 
we shall eventually want our first-order equation to reduce to a second-order system in 
a second-rank tensor, and if we use at most third-rank tensors this can be done in at 
most one derivative step. Since the general third-rank tensor transforms according to 

[9(44)13 - 9($$)@29($4 $ ) 0 4 9 ( 4  f) 
we are only interested in theories containing just the Sp irreps appearing on the 
right-hand side and also the lower-rank irreps 9 ( l l ) ,  9(101), 9(00).  

To obtain maximum simplicity of the theories we shall initially restrict ourselves to 
those in which none of the above irreps of 2Zp appears more than once-we discuss 
theories with repeated irreps (RIR) in 0 6. 

Using the graph-theoretical techniques of previous papers (Cox 1974a, b, c, 1978) 
the problem is to find which graphs, constructed on vertices corresponding to TP irreps, 
the edges corresponding to derivatives linking the irreps according to the non-zero 
elements of Lo, produce theories in which the spin-0 and 1 blocks are nilpotent and the 
spin-2 block has eigenvalues f 1, each once only, and otherwise zeros. Space reflection 
covariance demands that these graphs (and the weights of their edges) be symmetric 
about the II  axis, so the total number of graphs is quite restricted. Further, some 
apparent possibilities can be immediately excluded by the topological nature of the 

graph. Thus for example any graph containing the subgraph as the 0 block cannot 

be allowed, because it has a unique maximal matching and therefore cannot be 
nilpotent (Cox 1974~).  Such arguments exclude a number of graphs. Also, direct 
calculation on the general 1 block given in Cox (1974b) shows that neither of the 1 
blocks a or a is allowed as they cannot be nilpotent. Shamaly and Capri 
(1971) have given a maximum spin-2 theory with precisely the latter graph a, but 
their theory is in fact not manifestly space reflection covariant-the weights of the edges 
are not symmetric about the lI axis. & 
remain as possibilities to be checked in detail. This could be done by using the known 
forms of the s blocks with arbitrary elements, constructing the L, and analysing the 
mass-spin spectra by standard methods for equation ( l . l ) ,  choosing the elements of L, 
to give the required spectra. This is done by making the 0 and 1 blocks nilpotent and 
requiring the 2 block to have eigenvalues f 1, each once and otherwise zero eigenvalues. 
This, for a given graph, will determine the Lo and Li matrices essentially uniquely. 
However, the study of the constraint structure and behaviour under interactions is 
perhaps more familiar if the equations are written in tensor form, rather than the form 
(1.1) (but see Mathews et a1 1980). While the transition from (1.1) to tensor form is in 
principle straightforward (e.g. Frank 1973), it is much easier in practice to start directly 
from the graphs, with the Sp irreps corresponding to the vertices represented by 
appropriate Lorentz tensors. Thus, once the graph-theoretical ideas have done the 
initial work of deciding which linkages are allowed between Lorentz irreps, then at that 
stage we resort to more usual tensor representations to obtain the detailed coefficients 
of the first-order equations. 

The procedure is to represent each vertex in irreducible tensor form and link these 
tensors by derivatives in accordance with the structure of the graph. A directed edge 
from irrep i to irrep j denotes the construction of a term transforming according to irrep 
j from a term transforming according to irrep i and a single derivative (thus the edge 

I 

Using such ideas as above, it is found that only the graphs If & 
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represents a term in the Clebsch-Gordan expansion of 9(i i) x irrep i ) ,  multiplied by an 
arbitrary complex number. For example, consider the edges linking irreps 
9(f  f), 9(1 1): 

Here 9(1 1) is represented by a symmetric traceless tensor (p,“, 9(4+) by a vector q,. 
Then this graph represents the equations 

(PF” = a{a,cp”}sT 
1 1 = [acrcpv + &(P, - zg,, (89 11 

and 

cpr = Saa“cp,, 

where 8 9  = 8 ‘ p P  and { }ST means take the symmetric traceless part. Also, J = i. 1 and 
the values a, sd are taken to ensure that the theory is derivable from a real Lagran- 
gian-thus the above equations come from varying +,,,, $, in the Lagrangian term 

__ - - - 
a‘p,”{a~(P~”+S“p~“i~’cpo,,)+(p”’’cpo,,,  +qUqc, 

which, it can be verified, is real up to a total divergence. 
Once the general structure of the first-order system is written down, we then 

perform a constraint analysis to ensure that a unique spin-2 theory is obtained. This 
determines, in some cases uniquely, the values of the complex coefficients. That there 
must exist a solution giving such a theory in any particular case is most easily seen from 
the s-block analysis. In the next section we illustrate the above procedure in detail for 

the graph , and in $ 5  4 and 5 we outline the corresponding results for the other 
T . 

3. The graph 

The s blocks for this graph are (Cox 1974b) 

v 1 b lock  
1 

0 block 



First-order theories of spin 2 257 

2 block 

Here the notations are as in Cox (1974b). q3 and the si are * l ,  and the ci are arbitrary 
complex coefficients. In g ( k ,  I )  notation irreps 1 , 2 , 3  are 9(0, o), gtf t ) ,  9 ( 1 , 1 )  
respectively, while 4 and 5 are 9(& 3) and 9($, i), which we collect together into the 
notation 9 (St;). 

0-block nilpotency 

The unique spin-2 conditions are: 

6 s l l~11~+  12~21~21~  = 0 ;  

1-block nilpotency 
2 4s21c21 + 4v3s31c3I2 = 0 ;  

12v3s31c# f 0. 

unique mass for spin-2 block 

It is easily verified that these equations have a unique solution for sllc112, ~ 2 1 ~ ~ 1 ~  in terms 
of v3s3Ic3I2, and so a possible theory exists for this graph, and it is essentially 
unique-nly the moduli of the coefficients ci are determined, but their phases can 
always be assigned by some convenient convention. 

To obtain the precise form of the theory, we realise the irreps involved by 
appropriate irreducible Lorentz tensors. Throughout this paper we realise the irreps 
W O  01, 9(& 9(1 ,  11, 96, by tensors (0, cp,, (P,,, (pCIyp respectively, where (P,,, (pFYp 

are both completely symmetric and traceless. We realise 9 ( l O l )  - g ( l 0 )  + 9(01)  by an 
antisymmetric tensor AFV. 9(9$$) is realised by a tensor G,,,, which is antisymmetric in 
v and p and which satisfies the conditions 

E F"prrG,,Vp = 0 (3.1) 

(these two conditions serve to eliminate the two vector parts in the transformation law 
9 ( ~ ~ ) 0 9 ( 1 0 1 ) - 9 ( $ ~ 9 ) ~ 2 9 ( ~ ~ )  of a T,,up antisymmetric in vp (Singh and Hagen 
1974)). Note that the symmetry and trace conditions on the fields are assumed a priori, 
for convenience. There is no loss of generality in this; being simply algebraic condi- 
tions, they can be easily incorporated into the Lagrangian without altering the theory, if 
required. Also, note that given an arbitrary third-rank tensor VFVp, then a tensor T,,yp 
with the properties of G,,,, stated above can be constructed as follows: 

T,,up = [ V , V p l ~ ~ ~ =  Vwyp+ VVpp-V,pu- ~ p , u - ~ ~ ~ y ~ ~ ~ ~ D l p - ~ D l p ~ ~ ~ p o L ~ I  1 

+fg,,(2V",u - V",, - V,",). (3.3) 

It is easily verified that this object, antisymmetric in vp, satisfies the conditions (3.1), 
(3.2). 
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Having realised the irreps by appropriate tensors, we have to construct the general 
first-order system of equation with the linkage scheme 

The equations are 

G p , u p  = a3{au(Ppp)AST (3.4U) 

13.4b) 

cp, = szGzaucp,, + ala,cp 13.4c) 

cp = slalaL”p, (3.4d) 

( P w  = ~ 3 G 3 { a ~ G , , ~ ~  )ST+ a2{arrcpv )ST 

where, from (3.3), 

(3.5) 1 1 { a u ~ p p ~ A S T  = aUcpFp -aPcpFv -~g,,(acp), +~g,,wcp), 

(b), = a a c p a p .  

where 

We can reduce this to a pair of second-order equations in (P,, and cp, by eliminating the 
‘external’ representations G,,up and cp, and the result is 

1 1 
cp,u = s31u312[3~a,(acp), + au(acp),) -a2qCLy -4g ,”aP(acp) , l+T~z[a ,cpv  +aucp, -‘Lg,v(a(P)l 

( 3 . 6 ~ )  

cp, = s2G2aycp,v +s1la1I2a,(acp). (3.66) 

This system will describe a propagating spin-2 field if it implies the constraints 
cp, = acp = (dcp), = aP(acp), = 0 and thereby reduces to the Klein-Gordon equation for 
cpWy (the original technique of Fierz and Pauli (1939)). Differentiating ( 3 . 6 ~ )  twice and 
(3.66) once and putting A = acp, B = a ” ( a ~ p ) ~  yields the equations 

B = $a2a2A 

A = szdzB + sllu112a2A = ( f s ~ / ~ ~ ~ ~ + s ~ ~ u ~ ~ ~ ] ) ~ ~ A ,  

whence A = 0 results if we choose 
3 zs2lu2l2 + sllu1~2 = 0. 

acp = ap(acp)p = 0. 

This ensures 

Differentiating ( 3 . 6 ~ )  once, using (3.8), gives 

(aq) ,  = -fs3la3IZa2(ad, +laza2cp,, 

(3.7) 

13.8) 
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which, with (3.6b), gives 

and to obtain (acp), = 0 we must choose 
2 4s21a212-4sJlu31 = 0, 

(acp), = (P, = 0. 

which ensures, using (3.6b), that 

With (3.7)-(3.10), ( 3 . 6 ~ )  reduces to 

( a2+-)cpPv 1 = 0. 
s3la31 

(3.9) 

(3.10) 

(3.11) 

For real mass we must therefore take s3 = -1, and for simplicity we shall assume unit 
mass and therefore take la3I2 = 1. Then from (3.7), (3.9) we have 

(3.12) 

Without loss of generality, we will take the ai to be real and positive; then the desired 
equations (3 5 2 ) -  (3.5d) become 

( 3 . 1 3 ~ )  

cp,, = -3(aPG,, +aPGu,,p)+G[a,cpu +a#& -ig,u(acp)l (3.13b) 

cplr = - 4 aYcp,,, + id5 aPcp ( 3 . 1 3 ~ )  

Q = $d5aNq,. (3.13d) 

This theory is in fact already well known in a slightly different form (Schwinger 1963, 
Chang 1967, Hagen 1972). The Schwinger-Chang theory is a first-order system 
involving a second-rank symmetric tensor h,, not traceless, and a third-rank tensor 
H,,,, = -H,,pu with just the property (3.1): 

H w , u p  = 0. (3.14) 

H,,,up transforms according to the representation 9(%%)@9&). To obtain the 
Schwinger-Chang theory from (3.13) we absorb Q,, and Q into h,, and G,,,,, cp, into 
H,.YP. Specifically, with 

&, = Hu,a, ( 3 . 1 5 ~ )  

2 2  2 1  
s 2 = - 1  SI= +1 la21 = 3  la11 ‘ 2 .  

1 1 G ~ , , ~  =aucpFP -apcppy -~g,~(acp), +Tg,,(acp), 

E ,vPP 

(3.15b) 

( 3 . 1 5 ~ )  

(3.15d) 

the equations (3.13) take the form 

H , , , ~  =a,h, -aph,, +g,,(a,h -(ah),)-gw(auh -(ah),) 

h,, -g,A = -$a”(H,,, +Hu,wp) 

( 3 . 1 6 ~ )  

(3.16b) 

which are the Schwinger-Chang equations for unit mass (Hagen 1972). This obser- 
vation renders the analysis of the minimally coupled form of (3.13) unnecessary since in 
the form (3.16) it has been done by Hagen (1972) and Kobayashi and Shamaly (1978). 
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However, it is interesting to note that the interaction analysis of (3.16) is much easier 
than that of the form (3.13), the reason being that (3.16) reduces directly to a 
second-order equation in the single field h,, on eliminating H,,”,, whereas retaining the 
form (3.13) makes this less transparent-the number of possible interaction terms is 
much increased and more difficult to handle. Thus, an efficiency in the number and 
form of tensors used in the theory is advantageous, irrespective of what Lorentz irreps 
are involved. In respect of (3.16), the conclusion of Hagen (1972) was that it suffers no 
loss of constraints problem on minimal coupling, while Kobayashi and Shamaly (1978) 
showed that even so, the theory was acausal-which in fact had already been shown by 
Velo (1972). 

4. The graph -& 
For this theory the s-block decomposition is 

--&I 1 e & @  L 
0 block  1 b lock 2 block 

and writing down the nilpotency conditions for the 0 block and 1 block and the unique 
mass condition for the 2 block it can be verified that, just as in the previous section, there 
is an essentially unique solution for the coefficients of this theory. This encourages us to 
try the linkage scheme 

1 4 . 1 ~  1 

t 4 . l b )  

(4. I C )  

(4 . ld)  

(4.  l e  ) 

( 4 . 2 ~  1 
i4.2b) 
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(4.2~) 1 
cpCru = ~4d4a~cp,,, + $~363(a~G,,~,  + aPGu.pp) + fraz(a,qU + a u ~ ,  -Zg,,(acp)). 

Substituting for q,, and G,,up in cpWy gives the equation 
2 

1 1 

cp,” = ($X4+$x3)(aw(acp), +au(acp),)+(fX4-x3)a (PF” 

(4.3u) 4 x 4  + 4x3)gp,aP(acp), + 5 4 a , c p u  + d”cp, - zg,u(acp)) 
2 where xi = siluil . 

On the other hand, substituting for A,, in the equation for cp, we obtain 
(4.36) 

We now have to choose the ai, si such that (4.3) reduce to the constraints (acp)= 
ap(aq)p = Q, = (aq),  = 0 and yield a Klein-Gordon equation for cppu. 

2 
cp, =sZd2(acp),+xl(~,(~cp)-~ cp,). 

From (4.3u), with A = aq, B = a”(acp),, we obtain by differentiating twice 

B = 3x4a2B + $a4a2A (4.4a) 

and by differentiating (4.36) once 

A = ~ 2 6 2 B .  (4.46) 
Equations (4.4) imply 

B = ( $ ~ 4  + $x2)a2B 

so we must take 

(4.6) 9 
X q f g X z = O  

and this will ensure that 

acp = ap(a(p)p  = 0. 

(acp), = (dX4-fX3)a2(a44, +ta2a2cp, 

Now, by differentiating (4.3~) once, using (4.7), we obtain 

and the equation for cp, is 

(4.7) 

(4.8) 

(4.9) 2 
cp, = szaz(acp), -x1a 9,. 

The equations (4.8), (4.9) yield cp, = (acp), = 0 only if the operator determinant is 
always non-zero, 

5 1 2  
(gx4 -5x3)a - 1 ta2a2 

-(xla2+ 1) 

This is so only if 

(4.10~) 
(4.106) 

5 1  
gX4-5X3 = 0 
1 Zxz-xl = o  

(these conditions make the a4 and a2 terms vanish). Equations (4.6), (4.10) have the 
unique solution 

(4.1 1) 1 15 9 
X I =  2x2 x3 = - 7 x z  x4 = -gx2 

and then (4.3~) reduces to the equation 
(4.12) 3 2  

cpWy = -ix2a cpNU 
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for (P,,,. So, for unit mass we can take x2 = 3. Then (4.1) gives, assuming the ai to be real 
and positive, 

SI= s2 = -33 = -s4 = +1 

a l = f J 3  a 2  = d~ a3 = $45 a4 = 543. 
- - 

(4.13) 1 7 

With these values in (4.1) the resulting system describes a propagating spin-2 field with 
unit mass. It is convenient to rescale the fields as 

From (4.15) follow the constraints acp = aP(acp), = p, = ( d q ) ,  = 0 and then the equation 
for per,, reduces to Q,, = a (P,.. 

Now in the minimally coupled version of (4.15) the constraint analysis is compli- 
cated by the presence of the lower spin field (p,, and it seems sensible to adopt a similar 
approach to that in the previous section and absorb (P, and G,,,, into a single tensor 
He+,. Also, at the same time we can incorporate (pFY,  A,, into a single general 
second-rank tensor 2,". Specifically we substitute 

2 

( 4 . 1 6 ~ )  

(4.166) 

( 4 . 1 6 ~ )  

(4.16d) 
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It can be verified that this system leads to the constraints 

awau(z,, -$g , , z )  = o 
fap (zfiP + z,, ) - ia,z = o 
$ap (z,, - z,,) = o 

Q,, = 4(Z,, + z,, - ag,a 

resulting in an equation for 

2 of the form Q,, = a Q,,,, as required. 
The system (4.15), or (4.17), seems to be a new formulation of the massive spin-2 

field in terms of a non-symmetric tensor Z,,. Recently a new massless spin-2 theory has 
been given (Moffat 1979) which utilises a non-symmetric second-rank tensor, and it 
would be interesting to compare the zero-mass limit of (4.17), or indeed the theory of 
the next section, with this new theory. 

The minimally coupled version of (4.17), a, +a, - ieA, = T,, is easily and unam- 
biguously written down, being a first-order system. Eliminating Q,,~, H,,up this leads to 
a second-order equation for Z,, which contains a large number of troublesome 
coupling terms with the electromagnetic field F,,, some of which are derivative 
couplings. High-spin field theories can suffer a change in the number of constraints due 
to some forms of coupling to external fields (Fierz and Pauli 1939, Komar 1961, 
Federbush 1961, Vel0 and Zwanzinger 1969b, Vel0 1972, Hagen 1972, Tait 1972, 
Jenkins 1974, Mathews et a1 1976,1980), and this will change the number of degrees of 
freedom of the field. In many cases, including some types of spin-2 theories, minimal 
electromagnetic coupling suffers from precisely this problem; for example, the theory of 
D 6 (Hagen 1972) does. For such theories one must introduce non-minimal coupling 
terms in the Lagrangian to cancel the unwanted terms. For the theory of (4.17) this will 
involve additional derivative couplings in the original Lagrangian, with all of the 
attendant problems of such couplings. Even then, the resulting interaction theory is 
almost certainly acausal, although only a detailed analysis of the interaction theory will 
confirm this. Nevertheless, (4.17) is a valid and unusual formulation of free-field spin-2 
theory. 

5. The graph & 
An s-block analysis confirms that for this graph there are solutions to the nilpotency and 
mass conditions required for a massive spin-2 theory. The tensor equations are the 
same as (4.1), but with now a linkage between A,, and Glr,,,, so the equations are 

Q, = ~ ~ c ~ a " ~ , ,  +SldlauA,,. (5.le) 
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By following through the same procedure as in 00 3 and 4 we obtain a unique spin-2 
unit mass theory if we satisfy the equations 

where 

This system of equations is equivalent to 

1 a 1 
X I  “ 3  x 2  = - 9x4 x j  = 5x4 - 1 

and 
2 4  1 

(ex5 - =)x4 - g + c = 0 

The last equation shows that here we have a one (complex) parameter family of 
solutions for the ai and so there is a one-parameter family of systems of equations of the 
form (5.1) yielding a unique spin-2, unit mass, propagating field. While the interaction 
analysis of such a theory will be very difficult the extra freedom provided by the free 
parameter may allow some useful simplification. 

6. Repeated irreducible representations 

One of the frustrating aspects of high-spin theories is that by allowing the Lorentz irreps 
to be repeated, one can it seems obtain theories of almost unlimited complexity. Here 
we shall just illustrate the general approach to be followed in any particular case by 
means of an example which yields a theory already known. Govindarajan et a1 (1980) 
have recently begun to investigate the use of RIK in some particular general cases and 
their results may be of use here. 

The theory we aim to reproduce is the 50-component theory of Deser er a1 (1966) 
described by Hagen (1972). This utilises a third-rank tensor rFv,p = ryF,p, transforming 
according to a(;:) + 9($$$) + 29($$) and a symmetric tensor h,, - 9(ll) + 9(00).  We 
therefore begin with these representations and consider possible graphs constructed 
with them. A little consideration reveals just three distinct possibilities: 

t? ( 1 )  ( 1 1 )  3- / I l l  1 

It is (i) which corresponds to the theory of Deser et al. The reason we know this is 
because on contraction of the field equations of Deser et al it is seen that the two vector 
parts YF,v, rCIy,, are both linked to the scalar part h”, by differentiations, and further 
that T”,., alone is linked to the 9(ll) part of h,, by a derivative. The graphs (ii) and (iii) 
will yield alternative spin-2 formulations. It can be checked by s-block analysis that (i) 
does indeed allow a unique spin-2 theory. 
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The linkage scheme for (i) is 
QBVP 

Using earlier results the corresponding equations are 

cpwUp = ~ s [ i ( a , ~ v p  +aucpWp + ~ , ( P , J  -&g,y(acp)p +g,,(acp)v +g,(acp),)l ( 6 . 1 ~ )  

(6.1 b )  

(6 .1~)  

cp, = a2a,rp + s3&apcp, (6.ld) 

*, = a1a,cp (6.le) 

cp = slala*rL, +s2a2aFcp,. (6. If) 

1 G,,vp = -igpv(aP), +Fgpplr (a40)”) 
1 1 

qwv = + hs4d4(aPG,., + a P ~ , , , )  +?a3(a,rpv + aucp, -Zgwv(acp)) 

Eliminating 4pWvp, GFSvp, cp gives the equations 
= ( $ ~ ~ + 3 ~ ~ ) ( a , ~ a c p ~ ) ~  +av(acp),)+t3x5-x4)a 2 cprv 

( 6 . 2 ~ )  

(P, = ~ ~ a ~ ( a c p ) + s ~ ~ ~ ~ ~ a , ( a ~ ) + ~ ~ ~ ~ ( a 4 ~ ) ,  (6.2b) 

+w = xla,(a~)+s2uln2a,(acp>. ( 6 . 2 ~ )  
In these three equations we saturate all indices with derivatives and obtain three 
equations for aP(acp),, acp,a*. The conditions that these quantities vanish identically are 
(with xi = silail ) 

( 6 . 3 ~ )  

(6.36) 

Then the corresponding equations for (acp),, Q,, +, yield zero for these quantities only if 
( 6 . 3 ~ )  

1 -(h + i ~ ~ ) g , ~ a ~ ( a ( ~ ) ,  + 4a3(arcpv + aucp, -Fgfiv(acp)) 

2 

x1+ x2 + b 3  + 3x5 = 0 
2 2 3 Tx1xS + Tx2x5 + aX1x3 = 0. 

S l l  3x5 - 5x4 + 3x3 = 0. 

With these conditions satisfied equation ( 6 . 2 ~ )  reduces to 
1 2 

QFv = (5Xs -X4)a  Qru 

and so for unit mass 
1 gx5-xs=l. (6.3d) 
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With, say, x4 = a the equations (6.3) yield the solution 

2(a + 1) 1 
4 a  + 5  2(4a + 5 )  

XI=- x2 = 

x 3  = -34a  + 5 )  x4 = CY x g  = 3(a + 1). 

Rescaling the fields according to 

(6.4) 

i.e. a one-parameter family of systems yielding a unique spin-2, unit mass field theory. 
To convert this theory to the form given by Deser et a1 we must absorb the tensors 

cpwVp,  G,,,, qer, 4, into the single tensor r,v,p and p,,, cp into h,,. c p y V p  is identified with 
the symmetric traceless part of rCIy,,; G,,,, can be expressed in terms of r,Y,P by the 
general result (3.3); q,, must be identified with rpP,, and 4, with P,,,,. cpMU and cp are 
identified respectively with the traceless part and trace of h,,,. With these identifications 
it is just a matter of algebra to convert (6.6) to the form given by Hagen (1972) for the 
theory of Deser et al. However, we shall obtain a one-parameter family of such 
theories, of which Hagen’s form is just a special case. 

The coupling of this equation to an external electromagnetic field has been 
considered by Federbush (1961) and Fierz and Pauli (1939), and it is known that to 
maintain the correct number of constraints in the theory one must add a non-minimal 
term to the Lagrangian (Hagen 1972). This led Hagen to conjecture that only the 
theories with the minimum number of components (that of § 3 in the spin-2 case) allow 
consistent minimal coupling (that is, without loss of constraints). Be that as it may, little 
comfort may be drawn from it, since the theory of § 3 is in any case acausal. 

7. Minimal polynomial of LO 

As is well known, the Lo matrix in (1.1) obeys a minimal polynomial of the form 
(Harish-Chandra 1947) 

(7.1) L:(L; - 1) = 0 
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for theories with unique mass and spin. The nilpotency index 4 gives a measure of the 
complexity of the constraints in the theory, and also the minimal polynomial of LO 
determines that of LJ’, which is needed in the calculation of the Klein-Gordon divisor 
for (1.1) (Takahashi 1969). The theories of this paper provide examples of a simple 
graphical technique of placing bounds on 4 (Cox 1981). Consider the theory of 0 3. In 
the notation of Cox (1981) we have, from the graph of the 1 block, d, = 2 and PI = 1, 
and so for this theory the general result 

d, + 1 s 9 s 2p1 + 1 (7.2) 

gives by direct inspection 4 = 3. 
For the theory of 0 4, the 1 block gives d ,  = 3, p1 = 2, so for this theory we have 

4 d 4 d 5 .  Note that in this case we have in fact 2jp - 1 < 4 d 2jm - 1 where jp is the 
maximum spin of the physical state in the theory (i.e. spin 2), and jm is the maximum spin 
occurring in the Lorentz representation of the theory (Cox 1981). This theory therefore 
exhibits Glasses pathology (Glass 1970). 

For the theory of § 5 the 1 block again gives d, = 2, p1 = 3, so we obtain the bounds 

3 s 4 s 7 .  

The upper bound here is hardly surprising, since the 1 block is 7 x 7. 
The theory of 0 6 is particularly interesting. Here it is the 0 block which gives the 

best bounds on 4. From this we have d ,  = 4, p1 = 2 and so (7.2) gives 4 = 5 .  Thus, it 
appears that the ‘standard’ first-order massive spin-2 theory, constructed by analogy 
with the Palatini gravitational formalism, suffers from the Glass pathology, i.e. 4 > 
2s - 1. It does however still satisfy q d 2jm - 1. 

It is interesting to note that the theory of 9 3 is the unique theory for which the 
graphical analysis gives 4 = minimum = 3. This may provide a quantitative formulation 
for the conjecture of Hagen mentioned in 0 6. Thus, we might conjecture that the least 
troublesome theories are those for which 4 = 2s - 1 is the only possibility for 4, and that 
for such theories minimal coupling does not result in a loss of constraints. In this 
connection it is interesting that the Singh-Hagen equations for general spin s (Singh and 
Hagen 1974) do indeed satisfy q = 2s - 1 (Cox 1978, 1981), although of course their 
interaction consistency to loss of constraints has not yet been established. 

8. Conclusions 

We have shown how to obtain general first-order spin-2 theories by first identifying the 
possibilities by visual inspection of the graphs of the theories, and then using the tensor 
form to analyse the constraint structure of the various systems of equations cor- 
responding to the possible linkage schemes. Without using RIR there are only three 
distinct types of first-order spin-2 theories, distinguished by their graphs, using at most 
third-rank tensors. One of these is equivalent to the already familiar formalism of 
Schwinger and Chang while the other two are new and very complicated. This 
complication is reflected in the possible minimal polynomials of Lo and also in the 
increased complexity of the minimally coupled theory. It certainly seems unlikely that 
the more complicated theories improve the consistency problem of the interacting 
spin-2 theory. 

The treatment of theories with RIR has been illustrated with an example which is 
equivalent to a ‘standard’ theory, already well known. 
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The simplest theory of all is the 30-component theory of Schwinger and Chang. 
It has the least number of components and has the best behaviour under interactions. 

The possible minimal polynomials of Lo have been investigated for the different 
theories. The Schwinger-Chang theory is the only theory which gives q = 2s - 1 = 3 
unambiguously. 
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